Rounding Techniques in Approximation Algorithms

Lecture 8: Splitting off to Approximate Prize-Collecting Problems

Lecturer: Nathan Klein Scribe: Thodoris Tsilivis

1 Introduction

This lecture will focus on a variant of the metric Traveling Salesperon Problem, or metric TSP.
Here we are given a set of vertices V and a symmetric metric c: V x V — R>0, and our goal is to
output a minimum cost Hamiltonian cycle. We will use that it is equivalent to find a minimum
cost spanning Eulerian multi-subgraph, which follows because such a graph can be shortcut into
a Hamiltonian cycle with no greater cost due to the triangle inequality.!

1.1 Christofides-Serdyukov Algorithm

There is a simple and beautiful 3 approximation for metric TSP from Christofides [Chr76] (and
independently Serdyukov [Ser78]) in the 1970s.

Algorithm 1 Christofides-Serdyukov Algorithm

1: Find a minimum cost spanning tree T of G

2: Let O be the set of vertices with odd degree in T. Compute the minimum cost perfect matching
M on O.

3: Return T W M.

To prove that this is in fact a 3 approximation, we will break down the cost of the solution
into the cost of the spanning tree T and the cost of the matching M.

For the spanning tree, we can readily argue that its cost is at most OPT. That is because any
Hamiltonian cycle can be decomposed into a spanning tree plus an edge. That spanning tree
cannot have cost smaller than the minimum cost spanning tree, so ¢(T) < ¢(OPT).

For the matching, we will consider the odd degree vertices of T. Now, notice that since there
are an even number of odd vertices (by the handshake lemma), the optimal solution can be
decomposed into two collections of paths with degree 1 on every odd vertex and degree 2 on every
even vertex of T. Using the triangle inequality these paths can be shortcut into two matchings M;
and M, of no greater cost. Thus, c(M;) + ¢(Mz) < ¢(OPT), implying that either M; or M, has
cost at most 95T, So, the minimum cost matching found by the algorithm obeys c(M) < 95T

Thus we can combine our two arguments, to get that the cost of T M is at most OPT + % =
3. OPT.

1.2 Polyhedral View

Another approach towards solving the problem is to try to formulate an LP and come up with a
rounding argument. Towards that end, we define the Subtour LP relaxation for TSP.

1Formally, given an Eulerian graph, let v4,...,v; be an Eulerian tour in which vertices may appear more than once.
Keep only the first occurrence of every vertex in this sequence, except v; for which we keep the first and last. The
resulting Hamiltonian cycle has no greater cost than the Eulerian graph due to the triangle inequality.
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Theorem 1.1 ([Wol80]). The integrality gap of Py is at most %

Proof. Similarly to before, we will need to connect the cost ¢(x) to the cost of some MST and the
cost of some matching.

To bound the cost of the MST, we start by noticing the relationship between Ps,;, and P,_gc.
That is that for any x € Pg,;, it also holds that x € P,_gc. Furthermore, any x € Pgy, is
parsimonious since we have the. constraints x(6(v)) = 2 for all v € V. Thus we can use the lemma
from Lecture 6 to argue that x - (1 — %) € Pst. So, x dominates a convex combination of spanning
trees of G, implying that ¢(T) < c(x) for any MST T.

We will now bound the cost of the matching. Towards that end we need to define the dominant
of the matching polytope which is:

v ]x(6(S)) =1 VSCV,SNodd(T)is odd
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It turns out that this polyhedron has integral vertices (proving this is a bonus problem on

Homework 3). But now, 5 € PI\TA and has cost @ So the minimum cost matching has cost at most

@, and combining the tree and the matching gives us the theorem. O

1.3 Prize Collecting TSP

In this problem we are given a set of vertices V, a symmetric metricc : V x V — R>g and a
penalty 7t(v) for all vertices in V. Now our goal is to output a Hamiltonian cycle on some S C V
such that the cost of the cycle plus the penalty of the vertices not visited is minimized. That is we
want § = argmingcy cost(S) + ¥, ¢5 77(v).

It is quickly apparent that we cannot run the Christofides-Serdyukov Algorithm, since that
would require to somehow know which subset S of V we should get the Hamiltonian cycle on.
However, we can still consider whether an LP can yield something interesting.

Our new LP variables should be x, for each e € E, again indicating whether edge e is used in
the Hamiltonian cycle, and y, for each v € V, which will indicate if vertex v is visited in the cycle.
We can now define to prize collecting TSP polytope as follows:

(v)) =2y, YoeV-—{r}

5(S)) >2y, VYSCV—{r},veSs

X
Ppcrsp =
yr=1
Xe >0 Ve € E
Yo >0 VoeV .

Our objective will be min}_,cg c.Xe + Y pey To(1 — ¥ ), as we want to minimize the cost of the
tour plus the cost of the penalties on the vertices we do not visit.
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To use this LP to get an approximate solution for the problem, we need to now define the
splitting off operation, which allows us to remove pairs of edges adjacent to some vertex v from a
graph without decreasing the pairwise connectivity of vertices in V \ {v}.

2 Splitting Off

Theorem 2.1 (Splitting Off [Fra92]). Given a multigraph G = (V, E) and any vertex u € V of even
degree 2k, if u is not incident to any cut edge (an edge whose removal would disconnect the graph), the
edges uv adjacent to u can be paired up into groups (uay, uby), (uaz, uby), ... (uay, uby) such that after
removing all the edges adjacent to u and adding edges {a;, b;} for all i the pairwise connectivities a, b for
any vertices a,b # u do not decrease.

Even though splitting off is defined for integral graphs, this procedure can naturally be
extended to fractional graphs. The basis of the argument is that we can multiply all variables
x.’s of the fractional graph with a large number r so that all of them become integral. Then, we
can partition any edge of value x, into rx, € Z parallel edges, and proceed with splitting off
as you would in an integral multigraph. After all operations are applied, you can reverse the
multiplication and get the desired fractional graph. Furthermore, observe that we can choose r so
that all vertices have even degree: in this way, any vertex in a fractional graph can be split off to
obtain a new fractional graph. This will be useful shortly, and in fact allows us to extend the
above theorem to integral graphs if the output graph is allowed to be fractional as demonstrated
in the below Fig. 1.

Figure 1: Consider the graph on the left. The middle vertex cannot be split off because it is
adjacent to four cut edges. However, if we think of this as a fractional graph, we can multiply the
edges by two and then split off to obtain a valid (but fractional) split-off solution where all edges
have value %

We will not discuss running time in this lecture. See [BN23; BKIN23] for details: everything we
discuss can be made to run in polynomial time.
2.1 Decomposition Theorem and 2-Approximation
We will now use this to prove the following theorem from [BN23].

Theorem 2.2 ([BN23]). Let (x,y) € Ppcrsp. Then there exists a distribution y over trees T rooted at r
such that:
Plee T| < x., Ve E, and PoeT|=y, YoeV.



Notice that access to this distribution u already suffices to design an algorithm that yields a
2-approximation to this problem. Consider an algorithm that samples one tree T from p, doubles
its edges, and shortcuts the resulting Eulerian graph. The expected cost of the resulting cycle is at
most 2¢(x) and the expected penalty is Y <y 7To(1 — Y5 ). Since the LP relaxation has cost c(x) and
penalty Y.y 7, (1 — y,), we have proven that this algorithm is a 2-approximation. (And in fact,
the ratio is even better if the penalty cost incurred by the LP was greater than 0).

2.2 Proof of the Decomposition Theorem

We now need to show how the distribution y can be constructed. The argument will be the
following:

1. Begin from a point in Ppcrsp. Apply splitting off until the graph has two vertices left (one of
them being the root 7). At this point, show the theorem holds. In other words, show how to
construct a distribution for two vertices.

2. Undo the splitting off vertex by vertex, at each point extending the existing distribution over
trees into one that includes the new vertex.

For the base case with two vertices (root r and v), the distribution is fairly simple. With
probability v, return the tree with vertices y and v connected and with probability 1 — v, return
just the root r.

For the inductive hypothesis, suppose our current set of vertices V has size at least 2. Let
s be the vertex with the minimum y;,. Fully split off s and apply the inductive hypothesis on
G' = V ~ s. That yields a distribution y with the desired properties on G'.

We now need to undo the splitting off operation. Since for a single vertex, multiple splitting
off operations may have been required. We will analyze what happens for one of them and that
will suffice to prove that the IH holds after undoing all operations. Towards that end, consider
a specific splitting off operation for vertex s and for its edges (su, sv) in which these two edges
decreased by ¢ and edge uv increased by J for some J > 0.

First initialize for every vertex in V counters spare[v] = 0. Now consider all trees in the
distribution that include uv. If the distribution sets probability mass on these trees less than §
(that is Yr.0er #(T) = 77 < ) then define T to be all such tress. Otherwise, collect trees from the
support of ;1 until we obtain probability mass exactly 6 (we can do so WLOG by splitting trees in
the support into identical copies and adjusting their probabilities as needed). Using one of the
two we can properly define a collection of trees 7 such that:

weT,YTe€T , and Y u(T) = forsomey <4 .
TeT

Now proceed with the following steps for each T € 7T:
1. If s ¢ T, remove uv from T and add su, sv.

2. If s € T, add back one of edges su or sv so that the graph remains a tree. If su is added,
increase spare[v] by u(T) and otherwise increase spare[u] by u(T).

Finally, increase both spare[u] and spare[v] by ;7. We are now ready to prove the following
claim which holds after all splitting off operations are undone.
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Claim 2.3. Y.TeT|seT #(T) + Loey spare[v] = ys

Proof. To prove this we need to consider what the steps we defined for each T do. In case (1) we
know that the sum on the LHS increases by u(T), while in case (2) we know that some counter
spare increases j(T). Thus after going over all trees the LHS is exactly }_7.7 = 7 and by adding
as a final step J — <y to spares for u and v we get exactly J on the LHS. To finish the proof of the
claim, we use that the degree of s was 2y, so the sum over all J is y; (as every splitting operation
decreases two edges adjacent to s by J and increases an edge not adjacent to s by 6). O

To finalize the proof for the induction step, we need to take care of the spare counters and
ensure that s is in the tree with probability y, in our new distribution. To that end, consider some
v such that spare[v] # 0 and notice that

PloeT,s¢T]|>PoeT]|-PlseT|>ys—P[s e T|> spare[v],

where for the first inequality we used that y; was the smallest y value and in the second inequality
we used Claim 2.3. That means that can find a collection of trees that includes v but not s with
mass spare[v]. Modify each tree in this collection by adding the edge (s, v) and set spare[v] = 0.
Claim 2.3 still holds as we have increased PP [s € T| be spare[v] and decreased the sum of spares
by the same amount. After performing this operation for all vertices with spare[v] > 0, the
probability s is in T is exactly ys as required.

3 Improved Approximation

The natural idea to improving this beyond a factor of 2 would be to apply a matching similar to
the Christofides-Serdyukov algorithm. However, it’s difficult to bound its cost since the sampled
vertices in the algorithm are not guaranteed to be the vertices that some optimal solution visits.

However, there is room for improvement. Since the 2-approximation gets a factor of 1 on the
penalty cost, intuitively we should be able to trade off to some degree between the two factors.
[BKN23] employs the following strategy to achieve a 1.599 approximation: after sampling a tree,
take the subtrees which only contain vertices with small y,. With some probability, prune all
such subtrees. Otherwise, double the edges in these subtrees. In this way, we lose slightly on the
penalties for vertices with small y, and reduce to the case in which all y, are fairly large. In such a
situation, we can show all {T} + Bx € P]TA for some « + B < 1, allowing us to correct the parity of
the tree with lower cost than simply doubling all of the edges. In some way we are interpolating
between the algorithm which doubles the tree and the matching-based algorithm we analyzed in
Section 1.2. The key fact here is that once we have removed subtrees with small y, values, say
Yo < x, all cuts either have at least three edges in three or have x(6(S)) > 2x. See [BKN23] for
further details.

The main remaining open question is whether or not there exists an algorithm that achieves 3
approximation, or even better an approximation-preserving reduction from TSP.
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